Railway Network DV1490



Table of contents

1. Introduction
2. Description of the problem
2.1 Problem
2.2 Brief introduction to the solution approach
3. Description of the approach
3.1 Data processing from the input file
3.2 Kruskal's Algorithm
3.2.1 Algorithmic steps
3.2.2 Implementation details
3.3 Prim's Algorithm
3.3.1 Algorithmic steps
3.3.2 Implementation steps
4. Analysis of implementation
4.1 Data Processing analysis
4.2 Kruskal's analysis
4.3 Prim's analysis
5. Conclusion
5.1 Comparison of Prim's and Kruskal's algorithm

7. References

12

12

12

12

13

13

14



1. Introduction

A railway network is given in the form of a graph in which every vertex represents a station &
there are some links between some pairs of stations which represent the cost of constructing a
railway track between the pairs. See Figure 1 for reference. The railway network has to be
constructed in such a way that the cost of construction is minimum & all the stations are

connected to each other.

[Figure-1]
2. Description of the problem

2.1 Problem

1. The most cost-efficient way of constructing the railway tracks has to be found from the
input given in Figure-1.

2. The railway network has to be constructed in such a way that all the stations are
connected to each other i.e. if we select a station then there is always a way to go to any
other station in the network.

3. File handling part for the input of the network that would be provided to us in the form
of a text file is to be handled.

2.2 Brief introduction to the solution approach

1. Take the input graph from the text file by using the FileInputStream class of Java.

2. Store the graph in an appropriate data structure.

3. For the input graph, find one of its minimum spanning trees i.e. a tree constructed out

of the graph for which the sum of the weights of the edges is minimum.



4. Use Prim’s [1] as well as Kruskal’s [2] algorithm implementation in order to find the
minimum spanning tree of the input graph.
5. Output the final minimum spanning tree formed in the Answer.txt file using the

PrintStream class of Java.

3. Description of the approach

3.1 Data processing from the input file

For taking input from the input file:

For example, let the input file be named Nodes3.txt with the contents as follows:

Alpha
Beta
Gamma
Delta
Epsilon

Alpha Epsilon 3
Alpha Beta 2
Beta  Gamma 3
Gamma Delta 5

3

Delta  Epsilon

The following snippet contains code for the file handling part:

void main(String[] args) I0Exception{

PrintStream ps = new PrintStream(new File("Answer.txt"));

if(args[0]== ){
System.out.printin("Please provide the input file as a command 1line
argument");
return;
b

InputStream is = new FileInputStream(argsl[0]);

System.setIn(is)
s

System.setOut(ps);




Here it can be seen that the FilelnputStream class for taking the input from the file and the
input file name is passed from the console by using the command line arguments and can
be found in args[0], ‘is’ object contains the file input stream & passed in the
System.setln(is) as the argument so that it can take the input from the file in the same way
the input is taken from the command line. For the output file, the ‘ps’ object of the
PrintStream class has been initialised & passed in the object in the System.setOut(ps) in

order to print in the file by using standard System.out.printin() function.

For the file Nodes3.txt the code is run with the command:
» java Kruskal Nodes3.txt

For this file, the starting lines consist of the names of the vertices until an empty line is
followed.

List<String> nodes = new ArraylList<String>();

while(!(line = sc.nextLine()).isEmpty()) {

nodes.add(line);
}

int n = nodes.size();

The names of the vertices is being stored in a list of strings called nodes and the input is
taken by using the object of the scanner class “sc” by using the function sc.nextLine() until
the next line is empty as per the condition of the while loop.

In the end, all the vertices names are stored in the nodes list and the variable ‘n’ stores
the number of vertices.

As the vertices names are in the form of strings, for the convenience of the implementation.

Each string name of the vertex is represented in the form of an integer like this:

Alpha-0
Beta-1
Gamma-2
Delta-3
Epsilon-4

For this, a HashMap that maps the string name to the integer is used for the convenience

of the implementation.

Map<String, Integer> verticesToNumber = new HashMap<String,Integer>();

for(int i=0;i<n;i++){



verticesToNumber.put(nodes.get(i),i);

}

In the next lines of the file Nodes3.txt, the connections of the undirected edges are given
in the format:
> X y weight
List<Edge> edges = new ArraylList<Edge>();
while(sc.hasNext()){
String src = sc.next();
String dest = sc.next();
int weight = Integer.parselnt(sc.next());
Edge edge =
Edge(verticesToNumber.get(src),verticesToNumber.get(dest),weight);
edges.add(edge);
¥

int e = edges.size();

A list of Edges is used, edges class scheme is as follows:

Edge Comparable<Edge>{
int src = -1;
int dest = -1;
int weight = -1;
Edge(int src,int dest,int weight){

.Src = src;

.dest = dest;

.weight = weight;

int compareTo(Edge other){

return .weight - other.weight;

The Edge class is made comparable as this list has to be sorted in the algorithm.
The input of edges is taken one by one and is stored in a list named ‘edges’. The variable

‘e’ stores the number of edges.

Note: This input implementation remains the same for both the algorithms i.e. the Prim’s

as well as the Kruskal’s algorithm.

For the output, the following snippet is used:



List<Edge> mst = new Prim().findMst(graph,n,e);

for(String node:nodes){
System.out.println(node);
b
System.out.println();
for(Edge edge:mst){
System.out.println(nodes.get(edge.src) + "\t" + nodes.get(edge.dest)
+ "\t" + edge.weight);
b

Here, assume that in the List ‘mst’ has the final edges. For a detailed, Edge class, see the

further section.

3.2 Kruskal’s Algorithm
3.21 Algorithmic steps
The algorithm[2] works in the following steps:
1. The edges of the graph are sorted in the ascending order of their weights.
2. Assume that all the vertices of the graph are independent at the starting.
3. Traverse the sorted edges and select the edge and include it in the minimum spanning
tree only if the edge included doesn’t create a cycle in the graph.
4. Check if the graph contains a cycle by using the disjoint set data structure & its union
function after including an edge in the Minimum spanning tree.
3.2.2 Implementation details
For sorting the edges, the edge class is made comparable and used the
Collections.sort(edges) method to sort it. This sorting function is better than the
bubble/insertion sort as it would take O(nlogn) time in comparison to the O(n”*2) time taken by

the later algorithms.
List<Edge> findMst(List<Edge> edges,int n,int e){

Collections.sort(edges);

List<Edge> mst = new ArraylList<Edge>();

int selected = 0;

List<Subset> subsets = new ArraylList<Subset>();

for(int i=0;i<n;i++){



subsets.add(new Subset(i,0));

for(int i=0;i<e;i++){

if(selected == n-1) break;

int src = edges.get(i).src;
int dest = edges.get(i).dest;

int parSrc = findPar(src, subsets);

int parDest = findPar(dest, subsets);

if(parSrc !'= parDest){

mst.add(edges.get(i));

Union(subsets,parSrc,parDest);

selected++;

return mst;

The final minimum spanning tree edges are stored in the ‘mst’ list.

Working on the Disjoint-set union data structure:

1.

The disjoint-set union data structure is used with the union on the basis of rank [3].
This is better than the normal union operation of this data structure as the normal union
would have made a linear chain & each cycle checking operation would have become

O(n). But with the union operation by rank, the complexity is on average O(log(n)).

2. In adisjoint set union, initially, each vertex is independent. If we try to include an edge

in the minimum spanning tree, we would check whether the two vertexes in the edge

selected belong to the same set or not.

3. In order to do so, each vertex is associated with a parent, of its set and if the parents

of both the selected vertexes are the same, it means they belong to the same set and

cannot be included in the final minimum spanning tree.



void Union(List<Subset> subsets, int x, int y)
int xroot = findPar(x,subsets);

int yroot = findPar(y,subsets);

if(subsets.get(xroot).rank < subsets.get(yroot).rank){
subsets.get(xroot).parent = yroot;

else if(subsets.get(xroot).rank > subsets.get(yroot).rank){

subsets.get(yroot).parent = xroot;

else{
subsets.get(yroot).parent

subsets.get(xroot).rank++;

int findPar(int v,List<Subset> subset){
if(subset.get(v).parent==v) return v;
else return findPar(subset.get(v).parent,subset);

3.3 Prim’s Algorithm
3.3.1 Algorithmic steps
The algorithm works in the following steps:
1. First, initialize an MST with the randomly chosen vertex. Now, we have to find all the
edges that connect the tree in the above step with the new vertices.
From the edges found, select the minimum edge and add it to the tree.

Repeat step 2 until the minimum spanning tree is formed.

3.3.2 Implementation details
1. The Adjacency list data structure is used to store the graph in addition to the input.

The graph scheme is as follows:




Graph{
int n;
LinkedList<Edge> adjListl[];
Graph(int n){

.Nn =n;

adjList = new LinkedList[n];

for(int 1=0;i<n;i++){
adjList[i] = new LinkedList<Edge>();

void insertEdge(int src,int dest,int weight){
Edge edge = new Edge(src,dest,weight);
adjList[src].add(edge);
edge = new Edge(dest,src,weight);
adjList[dest].add(edge);

2. In this algorithm, the source vertex (in this case we are using the vertex ‘0’ as the
source vertex) is taken.

3. Three array data structures are used viz. parent, key, visited. Parent[n] array store the
parent of the ith vertex in the mst constructed. Key[n] stores the current key value of
the ith vertex. Visited[n] stores whether the ith node is included in the mst or not. Visited
array is a Boolean array.

4. The minimum edge is found with the use of a max-heap data structure. This data
structure instead of iterating over all the edges connected to the current mst as it would
become an O( e ) operation in the case of iteration. While in the case of a max-heap,
this can be done in O(log(e)) time.

In java, the implementation is as follows:

10



int vertex = -1;
int key = -1;
Item(int vertex,int key){
.vertex = vertex;

.key = key;

}
PriorityQueue<Item> pg = new PriorityQueue<Item>(n,new Comparator<Item>(){
int compare(Item pl,Item p2){
return pl.key - p2.key;

B g

pg.add(new Item(0,0));

Then the priority queue iteration is done as follows:
while(!pq.isEmpty()){

Item item = pg.poll();
int u = item.vertex;

if(visited[ul== ){

continue;

visited[u] =

for(Edge edge:graph.adjList[ul){

int v = edge.dest;

if(!visited[v] && edge.weight < key[v]){
key[v] = edge.weight;
parent[v] = u;

pg.add(new Item(v,keyl[v]));

5. The edges included in the mst can be found from the parent array as follows:

List<Edge> mst = new ArraylList<Edge>();
for(int i=1;i<n;i++){
mst.add(new Edge(parent[il,i,key[il));




6. Then, the list ‘mst’ of edges can be returned.

4. Analysis of implementation

4.1 Data Processing analysis

Assumptions: n=number of vertices in the graph, e=number of edges in the graph.

Input analysis:

As n vertices and e edges are read, so the time complexity for this operation is O(n+e).

4.2 Kruskal’s analysis

1.

The edges list is being sorted according to the increasing order of their weights. As
there are e edges, so this operation takes O(elog(e)) time as the inbuilt Collections sort
function in Java uses merge/quicksort implementation which runs in O(eloge) time.
Iteration is done through all the edges in sorted order and it is found whether the edge,
if included forms a cycle or not in the current minimum spanning tree which is an
O(log(n)) operation in the worst case due to the rank-based Union algorithm. We do
this e times as we are iterating over the edges.

Proof [3]: In the case of the Union operation in union without using rank, it could happen
that in the worst case all the vertices are linked together in a chain of length ‘n’. In that
case, the query for finding the parent would be O(n) operation. But, when the union by
size/rank is used, the forming of a single long chain is ruled out & in the worst case the

operation for finding the parent becomes O(log(n)).

So, the overall time complexity of the algorithm is O(eloge + elogn).

If, in place of the rank-based union, if the normal union operation would have been used, then

each union operation would have cost O(n) time in the worst case as explained in the proof.

This would have made the algorithm O(elog(e)+e.n) time ~ O(ne) time which is >>

O(eloge+elogn) that we used. That's why the rank-based union function is preferred.

4.3 Prim’s analysis

1.

The creation of the adjacency list is an O (e) operation as the list of edges of size ‘e’ is
traversed.
The initialisation of the three arrays viz. parent, key, visited is also an O(n) operation

as each array of size ‘n’

12



3. As the priority queue implementation of Java collections is used which uses a binary
heap data structure implementation, the following are the time complexities for the
various operation on it.

In binary heap, the insertion operation is O(log(n)) in worst case and the removal
operation of the smallest element is also O(log(n)) as the root element of the heap is
removed & than the max-heap is rebalanced for making the next smallest element as
the root.

As ‘n’ number of vertices are being inserted in the priority queue, so the time complexity
of the priority queue loop is O(nlogn).

The other method for finding the minimum key value would have to iterate over all the
key values in the array & find the smallest one out of them for a vertex that has not
been included in the minimum spanning tree yet, that would have made the time
complexity as O(n.e) >> O(nlogn), that is why the priority queue data structure is
preferred.

So, the overall time complexity = O(e+nlogn)

5. Conclusion

In order to solve the problem mention in section '1’, the two well known algorithms viz.
Prim’s & Kruskal’'s were used in their most efficient implementation. The following time
complexities were achieved:
i) Kruskal algorithm: O(eloge + elogn).
ii) Prim algorithm: O(e+nlog(n))
5.1 Comparison of Prim’s and Kruskal’s algorithm
Prim’s algorithm time complexity is better in comparison to Kruskal's algorithm in the case
when the graph is dense i.e. it has a large number of edges as can be seen in the final time

complexities of both the algorithms.
Prim’s algorithm would not offer much control when the edges having the same weights are

repeated as those edges are stored in the queue rather than all the edges as in the case of

Kruskal’s algorithm.

13



6. References

[1] https://cp-algorithms.com/graph/mst_prim.html

[2] https://cp-algorithms.com/graph/mst_kruskal.html

[3] https://cp-algorithms.com/graph/mst_kruskal with dsu.html

14



