
 April 2022

CPI221 – Networking – Number Guessing
50 points

Topics:

• 4 Pillars of OOP

• Multithreading

• Networking

• Client & Server Application

• Input & Output Streams

Description

This will be a simple number guessing game. The server will maintain the a

“number guessing game” that clients will connect to. The server will pick a

number and client will send guesses in. When a client guesses, the server will

give them feedback.

Use the following Guidelines:

• Give identifiers semantic meaning and make them easy to read (examples

numStudents, grossPay, etc).

o Keep identifiers to a reasonably short length.

o Suggestions: Use upper case for constants. Use title case (first

letter is upper case) for classes. Use lower case with uppercase word

separators for all other identifiers (variables, methods, objects).

o Strive for self-commenting code

• Use tabs or spaces to indent code within blocks (code surrounded by braces).

This includes classes, methods, and code associated with ifs, switches, and

loops. Be consistent with the number of spaces or tabs that you use to

indent.

• Use white space to make your program more readable.

Important Note:

All submitted assignments must begin with the descriptive comment block. To avoid

losing trivial points, make sure this comment header is included in every

assignment you submit and that it is updated accordingly from assignment to

assignment.

/*

Name: <your name>

Date: <turn in date>

Description: <short description of code in file/project>

Usage: <how to use your program, including syntax for launching the program (command line

arguments)>

*/

Programming Assignment:

Instructions:

Review the lecture that walked through getting the chat client and server

together. The code for this project has not been published, use the lecture as a

tutorial and create your own version of the application and confirm that it

works.

For this assignment you will create two pieces of software, a server and client.

Server:

The server maintains communication with the clients and maintains a number

guessing game. When a client successfully guesses the number, the sever will

announce to all clients that there was a winner, reveal the hidden number, then

start a new round.

When a client guesses, the server should respond with one of three messages: “Too

Low”, “Too High” or “You got it!”

To make it easier, clients should be able to join an already in progress round.

Client:

The client is very simple. Before connecting the client should get a name from

the user. Upon making the connection to the server, the client should send the

user’s name to the server. The server will take the name and use the

socket/socket resources to build appropriate thread jobs to communicate with that

client.

Clients connecting mid-game just join the game already in progress, this should

not interrupt the current round.

Then the client should show feedback from the server and take a guess from the

client. This should continue until the client enters -1 at which point it should

quit.

Specifications:

Server

The server should be multi-threaded. It holds a hidden number which the clients

are attempting to guess. This hidden number should be an integer between 1 and

1,000,000.

Jobs:

1. Listen for new client connections

a. Receive the client’s name

b. Build a client handler thread

c. Start the thread

2. Client handler thread

a. Listens for client input

b. When receiving client input, compare against hidden number

i. Send one of three messages back to the client that guessed:

1. Your number: <client guess> was Too Low

2. Your number: <client guess> was Too High

3. Your number: <client guess> was Correct!!

c. Send feedback

i. If a client “wins”

1. Re-randomize the hidden number

2. Use a sendToAll() method to let all clients a victory

happened and there is a new number

The Server should have support methods that the Client Handler threads can use

such as:

sendToAll(String) – This method sends a string to all clients to give mass

feedback (i.e. – a new round has started)

redoNumber() – This method re-randomizes the hidden number for a new round

getNumber() – get the hidden number

Client

The client should also be multithreaded.

Jobs:

1. Listen to the server for feedback and output it to the user

2. Take input from the user and send it to the server

The client is pretty straight forward.

• Connect to the server

• Prompt the user for their name

• Send the name to the server

• Set up Server Listener thread and run it

o When it receives a message just output it to the console, nothing

fancy

• Set up Client Input thread and run it

o When the user gives input, send it to the server, prompt the user for

their next guess.

Extra Credit Opportunities:

+5 – Make it with a GUI client. Send updates to all users showing what the other

users are guessing.

Notes and tips:

• Think about the jobs you need to do for the server and the client

• You can pass a reference to the main server or client object to the

constructor of a Runnable

• You can “re-use” the same object reference… built a printwriter? You can

pass that object reference to a Runnable and you can store it locally in

your server or something like that

• Having a client disconnect from the server can cause all sorts of problems.

You can actually use exception handling to figure out a client disconnected

and then remove their resources on the server end.

Grading of Programming Assignment

The Grader will grade your program following these steps:

(1) Compile the code. If it does not compile a U or F will be given in the

Specifications section. This will probably also affect the

Efficiency/Stability section.

(2) The Grader will read your program and give points based on the points

allocated to each component, the readability of your code (organization of

the code and comments), logic, inclusion of the required functions, and

correctness of the implementations of each function.

Rubric:

What to Submit?

You are required to submit your solutions in a compressed format (.zip). Zip all

files into a single zip file. Make sure your compressed file is labeled correctly

- <lastname>_<firstname>_hw4.zip

The compressed file MUST contain the following:

• <lastname>_<firstname>_hw4.c / .cpp

If you did extra credit that involved File I/O, please include a sample file. No

other files should be in the compressed folder.

If multiple submissions are made, the most recent submission will be graded, even

if the assignment is submitted late.

Where to Submit?

All submissions must be electronically submitted to the respected homework link in

the course web page where you downloaded the assignment.

Academic Integrity and Honor Code.

You are encouraged to cooperate in study group on learning the course materials. However, you may not

cooperate on preparing the individual assignments. Anything that you turn in must be your own work: You must

write up your own solution with your own understanding. If you use an idea that is found in a book or from other

sources, or that was developed by someone else or jointly with some group, make sure you acknowledge the

source and/or the names of the persons in the write-up for each problem. When you help your peers, you should

never show your work to them. All assignment questions must be asked in the course discussion board. Asking

assignment questions or making your assignment available in the public websites before the assignment due will

be considered cheating.

The instructor and the TA will CAREFULLY check any possible proliferation or plagiarism. We will use the

document/program comparison tools like MOSS (Measure Of Software Similarity: http://moss.stanford.edu/) to

check any assignment that you submitted for grading. The Ira A. Fulton Schools of Engineering expect all

students to adhere to ASU's policy on Academic Dishonesty. These policies can be found in the Code of Student

Conduct:

http://www.asu.edu/studentaffairs/studentlife/judicial/academic_integrity.h

tm

ALL cases of cheating or plagiarism will be handed to the Dean's office. Penalties include a failing grade in the

class, a note on your official transcript that shows you were punished for cheating, suspension, expulsion and

revocation of already awarded degrees.

