CPI221 - Networking - Number Guessing

50 points

Topics:
e 4 Pillars of OOP
e Multithreading
e Networking
e (lient & Server Application
e Input & Output Streams

Description

This will be a simple number guessing game. The server will maintain the a
“number guessing game” that clients will connect to. The server will pick a
number and client will send guesses in. When a client guesses, the server will
give them feedback.

Use the following Guidelines:

e Give identifiers semantic meaning and make them easy to read (examples
numStudents, grossPay, etc).

o Keep identifiers to a reasonably short Tlength.

o Suggestions: Use upper case for constants. Use title case (first
Tetter is upper case) for classes. Use lower case with uppercase word
separators for all other identifiers (variables, methods, objects).

o Strive for self-commenting code

e Use tabs or spaces to indent code within blocks (code surrounded by braces).
This includes classes, methods, and code associated with ifs, switches, and
Toops. Be consistent with the number of spaces or tabs that you use to
indent.

e Use white space to make your program more readable.

Important Note:

ATl submitted assignments must begin with the descriptive comment block. To avoid
lTosing trivial points, make sure this comment header 1is included in every
assignment you submit and that it is updated accordingly from assignment to
assignment.

/*
Name: <your name>

Date: <turn in date>

Description: <short description of code in file/project>

Usage: <how to use your program, including syntax for launching the program (command line
arguments) >

*/



Programming Assignment:

Review the lecture that walked through getting the chat client and server
together. The code for this project has not been published, use the lecture as a
tutorial and create your own version of the application and confirm that it
works.

For this assignment you will create two pieces of software, a server and client.
Server:

The server maintains communication with the clients and maintains a number
guessing game. When a client successfully guesses the number, the sever will
announce to all clients that there was a winner, reveal the hidden number, then
start a new round.

When a client guesses, the server should respond with one of three messages: “Too
Low”, “Too High” or “You got it!”

To make it easier, clients should be able to join an already in progress round.
Client:

The client is very simple. Before connecting the client should get a name from
the user. Upon making the connection to the server, the client should send the
user’s name to the server. The server will take the name and use the
socket/socket resources to build appropriate thread jobs to communicate with that
client.

Clients connecting mid-game just join the game already 1in progress, this should
not interrupt the current round.

Then the client should show feedback from the server and take a guess from the
client. This should continue until the client enters -1 at which point it should
quit.



Server

The server should be multi-threaded. It holds a hidden number which the clients

are attempting to guess. This hidden number should be an integer between 1 and
1,000,000.

Jobs:
1. Listen for new client connections
a. Receive the client’s name
b. Build a client handler thread
c. Start the thread
2. Client handler thread

a. Listens for client 1input

b. When receiving client input, compare against hidden number
i. Send one of three messages back to the client that guessed:
1. Your number: <client guess> was Too Low
2. Your number: <client guess> was Too High

3. Your number: <client guess> was Correct!!

c. Send feedback
i. If a client “wins”
1. Re-randomize the hidden number

2. Use a sendToAl11() method to Tet all clients a victory
happened and there is a new number

The Server should have support methods that the Client Handler threads can use
such as:

sendToAl11(String) - This method sends a string to all clients to give mass
feedback (i.e. - a new round has started)

redoNumber() - This method re-randomizes the hidden number for a new round

getNumber() - get the hidden number



Client
The client should also be multithreaded.

Jobs:
1. Listen to the server for feedback and output it to the user
2. Take input from the user and send it to the server
The client is pretty straight forward.
e Connect to the server
e Prompt the user for their name
e Send the name to the server
e Set up Server Listener thread and run it

o When it receives a message just output it to the console, nothing
fancy

e Set up Client Input thread and run it

o When the user gives input, send it to the server, prompt the user for
their next guess.



+5 - Make it with a GUI client. Send updates to all users showing what the other
users are guessing.

Notes and tips:
e Think about the jobs you need to do for the server and the client

e You can pass a reference to the main server or client object to the
constructor of a Runnable

e You can “re-use” the same object reference.. built a printwriter? You can
pass that object reference to a Runnable and you can store it locally 1in
your server or something like that

e Having a client disconnect from the server can cause all sorts of problems.
You can actually use exception handling to figure out a client disconnected
and then remove their resources on the server end.



Grading of Programming Assignment

The Grader will grade your program following these steps:
(1) Compile the code. If it does not compile a U or F will be given in the

Specifications section.

Efficiency/Stability section.
(2) The Grader will read your program and give points based on the points
allocated to each component, the readability of your code (organization of
the code and comments), logic, inclusion of the required functions, and
correctness

Criteria
Specifications
Weight
50.00%

Code Quality

Weight
20.00%
Documentation
Weight
15.00%

Efficiency

Weight
15.00%

Levels of Achievement

A

100 %

The program works and
meets all of the
specifications.

100 %
Code is written clearly

100 %

Code is very well
commented

100 %

The code is extremely
efficient without
sacrificing readability and
understanding

What to Submit?

You are required to submit your solutions in a compressed format (.zip).

B

85%

The program works and produces the
correct results and displays them
correctly. It also meets most of the other

specifications.

85 %
Code readability is less

85 %
Commenting is simple but sclid

85 %

The code is fairly efficient without
sacrificing readability and understanding

C

5%

The program produces mostly correct
results but dees not display them

correctly andfor missing some
specifications

5%

The code is readable cnly by
someone who knows what it is
supposed to be doing

™%
Commenting is severely lacking

5%

The code is brute force but concise.

D

65 %

The program produces
partially correct results,
display problems and/or
missing specifications

65 %

Code is using single letter
variables, poorly organized

65 %
Bare minimum commenting

65 %

The code is brute force and
unnecessarily long.

This will probably also affect the

of the implementations of each function.

E

B%

Program compiles and
runs and attempts
specifications, but several
problems exist

B%

The code is poorly
organized and very
difficult to read

35 %
Comments are poor

B%

The code is huge and
appears to be patched
together

u

20 %

Code does not compile
and run. Produces
excessive incomect
results

20 %

Code uses excessive
single letter identifiers.
Excessively poorly
crganized.

20 %

Only the header
comment exists
identifying the student

20 %

The code has created
very poor runtimes fer
much simpler faster
algorithms.

files into a single zip file. Make sure your compressed file is labeled
- <lastname>_<firstname>_hw4.zip

The compressed file MUST contain the following:

e <lastname>_<firstname>_hw4d.c / .cpp

F

0%

Code does not
compile. Barely an
attempt was made at
specifications.

0%

Code is
incomprehensible

0%
Non existent

0%
Code is
incomprehensible

Zip all
correctly

If you did extra credit that involved File I/0, please include a sample file. No
other files should be in the compressed folder.

If multiple submissions are made, the most recent submission will be graded, even
if the assignment is submitted late.

ATl submissions must be electronically submitted to the respected homework Tink in
the course web page where you downloaded the assignment.



Academic Integrity and Honor Code.

You are encouraged to cooperate in study group on learning the course materials. However, you may not
cooperate on preparing the individual assignments. Anything that you turn in must be your own work: You must
write up your own solution with your own understanding. If you use an idea that is found in a book or from other

sources, or that was developed by someone else or jointly with some group, make sure you acknowledge the
source and/or the names of the persons in the write-up for each problem. When you help your peers, you should
never show your work to them. All assignment questions must be asked in the course discussion board. Asking
assignment questions or making your assignment available in the public websites before the assignment due will
be considered cheating.

The instructor and the TA will CAREFULLY check any possible proliferation or plagiarism. We will use the
document/program comparison tools like MOSS (Measure Of Software Similarity: http://moss.stanford.edu/) to
check any assignment that you submitted for grading. The Ira A. Fulton Schools of Engineering expect all
students to adhere to ASU's policy on Academic Dishonesty. These policies can be found in the Code of Student
Conduct:

http://www.asu.edu/studentaffairs/studentlife/judicial/academic integrity.h
tm

ALL cases of cheating or plagiarism will be handed to the Dean's office. Penalties include a failing grade in the
class, a note on your official transcript that shows you were punished for cheating, suspension, expulsion and
revocation of already awarded degrees.




