Sdl bt e’

COMP1040

Programming Fundamentals

Prepared by
Michael Ulpen

August 2017

CONTENTS

1] (o o (U T o] o DU PSPPSR 1
L= 10 0= =1 Vo 11 = PSSRSO 1
PrOVIAEA ClASSES veveiteieieste ettt sttt sttt st s et e st e ke e e bt ebe s e e st e bt se e s e ek e s b e st eb e e b e s e ekt s b e st e b e e b e e e bt eb et e bt ebe e ebenbe e ebenbe e ebenras 1
ENGINE.GAMEENGINE ...ttt e e s b et e oo sk et e e oa kbt e e oo sk et e e ek b et e e ansbe e e e aanbe e e e anbn e e e e nnns 1
EeNgINE.INTEIMACES. IPAINTADIE. ... e e e s e st e et e e e s e s n b e e e e e aeeeeaantaeaeaeeeeeeeanrrrreees 1
engine.interfaceS. IUPAALADIEuviiiiiie e e e e s e s e e e e e e s e st a e e e e e e e e a et r e e e e e e e e aanrrraeees 2

=T aTo [T g [1= 10 =TT PP PUPPPR P 2
ENGINE.IMAIN.VECTIONZD ...ttt o et e e e sttt o4 e a b bt e e 4 aa ket e e e Rk b et e s ekt e e e e ans b et e e easbe e e e anbneeeennnns 2
engine.Math. BOUNGINGBOX........ciiiiiiiiiiiie e e e e e s e s e et e e e s s s st e e e e eeee s s s anteaeeeeaeesssnnnteaneeeeeeseannnrenneees 2
UIML DIBQEAIM ..ottt h et h bbb e bt b8 e b e bt A0 28 £ e R £ Eeh £ e b e 482 H £ eb e Eeh £ eb e Ab e s £ eb e A b e R £ e bt A b e b e eb e e b e s e ebenb e s b ebeab e e et e nnas 3
=070 15 1 4
PrOVIAEO CIASSES ... ittt bbbt h st e e e bt e b eb £ e b £ 4R e s e e E e b e eE e b e A b e eh £ e h e e R b e s b e eb e b e eh e eb e e b e enb e e et e beebe et e abeeneas 4

= Tolo k][I o oo g [Y- U o OO OO PRSP PUPPR P 4

L=ToTo 1110 gAYV o] (o T 11 PP P PP PPPP R TPPPP 4
ECOSIM.WOITA. GIASSTIIE ...ttt ettt e e oo ettt et e e e e e o s e bbb ettt e e e e e e aab b e e e et e e e e e annbbbeeeaeeeeeaannnbnneeas 4

L= ToTo 1S3 10 ATV T [o IR =T g o I 1= SRR 4

L= ot 0 1S 114 T =T 011120 =1 0P PPPPRt 4

L= oT0 1S [T 1072] = TN | PP PSPt 4

LR =To [T rcTe B F -SSP 5

L2 Tolo][0 g I o oo 4T =L oto 1] o o O PP PP PUPPR P 5

L2 Tolo][0 g IE= o1 11§V AN a1 o= | PP PUPPRP 5

L= ToTo 1[0 T =T 01172140 1 1 o 7= | S PP PPPPPPRt 6

L= ToTo 1Y T =T 11728 =L PP PPPRPPPRt 6
ecosim.exception.OUtOfBOUNASEXCEPLIONcoiiuiiiiiiiiii ittt ettt et e e e et e e e e nbae e e e neeas 7
SOUFCE COOE DOCUMENTATION ...ttt sttt b bbbt he e s e b e bt e bt bt e bt e bt e R e et et e sbeeb e s bt ebeeh e et et sbenbesbeebeenes 7
UIML DIBOEAM ..ottt ettt bbb bbb bbbt s b e b £ eh e S e e h e eh e S EeH £ eh e 4 EeH e eh e A E e s e eb e Ab e s £ eb e A b e R e e bt e b e st eben b e s e ebenbes e ebesbe e ebennes 8
HOW TO SEBIT . s 9
Yo (o 11 o] o T TP P PPPPPPTN 9
YU o T FSTS o T 1= = 1 PSS 10
EXteNSIoNS and Late SUDMISSIONSccueeiiiiiiee sttt e e e e et e e e e e e e s st e e e e e e s s s s staaeeeeeeesssannsanneeneeeseannnsnneeees 10
2 o%= 1o 1= 0 ¢ 1o 1Y 1T o 0] T[0T 11

Y T gL I O 1 (=] T TP UUTPPPR 11

INTRODUCTION

This document describes Assignment 2 for Programming Fundamentals. The assignment will require you to write
classes to represent Animals and Plants in an ecosystem simulator, called EcoSim. This will be a graphical
application, utilizing your own classes and code with help from a provided game engine. You will be required to
demonstrate the use of arrays, inheritance, polymorphism and exception handling.

This document outlines how to use the game engine. Documentation for the game engine may be found in Javadoc
format, written as comments in the source code and organized into html files in the doc folder. This document also
provides instructions for how to complete the ecosystem simulator.

This assignment is an individual task that will require an individual submission. You will be required to submit
this project in week 12 of the study period. In the case that you do not fully understand the assignment, please ask
your lecturer.

GAMEENGINE

The assignment files include a GameEngine which will automatically handle graphics, input and object updates. Part
of the assignment is learning how to use the provided GameEngine to create a graphical application. There are many
classes in the GameEngine and many methods in those classes. You will need to read the source code
documentation to get a full understanding of how to use them.

Provided Classes

The following is a summary of some of the important classes that have been provided...

engine.GameEngine

GameEngine manages a resizable array of IPaintable, I[Updatable and ICollidable objects. It also manages the
Keyboard, Mouse, GraphicsWindow and Game objects. All methods in the GameEngine are static, which means they
can be accessed from anywhere without constructing a GameEngine object.

The following is a list of the most important static methods in the GameEngine:

e GameEngine.loadGame(Game g)
Calls that game's load method and makes the window visible. It then starts the GameEngine update and
paint loops.

e GameEngine.add(Object o)
If the object is an IPaintable, ICollidable and/or IUpdatable, it will be added to the GameEngine's array and
will automatically be painted and updated.

e GameEngine.addToBackground(IPaintable p)
If the object is an IPaintable, ICollidable and/or IUpdatable, it will be added to the GameEngine's background
and will automatically be updated and painted behind other IPaintables.

e GameEngine.remove(Object o)
If the object has been added to the GameEngine it will be removed.

e GameEngine.getGameObjs()
Returns all game objects in the GameEngine's array.

e GameEngine.getGameObjs(String classPath)
Returns all objects in the GameEngine's array that are instances of the argument classPath. The classPath
must be fully qualified, including the package path. For example, getGameObjs("ecosim.entity.Wombat") will
return all the Wombat objects in the GameEngine.

engine.interfaces.IPaintable

The IPaintable interface has one method, paint(Graphics g). The Entity and Tile classes implement IPaintable and
already have a suitable paint method.

lofll

engine.interfaces.lUpdatable

The IUpdatable interface has one method, update(long millisElapsed). Entity implements the IUpdatable interface and
you will have to write your own update method. This method will be called automatically by the GameEngine 60 times
per second.

engine.Game

Game is an abstract class including the following abstract methods:

loadKeyFunctions()

Creates executable functions and binds them to Keyboard keys.

loadMouseFunctions()

Creates executable functions and binds them to Mouse buttons.

loadlmages()

Calls ImagelLibrary.load(String alias, String imagePath) for each image in the assets folder.
getWinWidth()

Returns the width of the game window.

getWinHeight()

Returns the height of the game window.

update(long millisElapsed)

Updates the state of the game. Any code that should be executed 60 times a second should be added here.

The above methods will have to be implemented in any class that derives from Game. Game has one non static
method, load(), which will automatically call loadimages(), loadMouseFunctions() and loadKeyFunctions().

engine.math.Vector2D

A Vector2D contains x and y coordinates. It can be interpreted as a point in space or a direction with an origin. The
Vector2D contains the following methods:

add(Vector2D other)

Adds the argument x to this x and the argument y to this y.
subtract(Vector2D other)

Subtracts the argument x from this x and the argument y from this y.
scale(float scale)

Multiplies both the x and y by the argument scale.

normalize()

Divides the x and y components by the Vector's length. The result is a Vector with a length of 1, also known
as a unit vector.

distance(Vector2D other)

Returns the distance between this Vector and the argument Vector.

engine.math.BoundingBox

A BoundingBox contains a position, as a Vector2D, and a width and height. The position is the top left point of the box.
It contains the following methods:

move(Vector2D movement)

Adds the argument vector to this object's position.

distance(BoundingBox other)

Returns the distance between this BoundingBox's position and the argument's position.
contains(Vector2D point)

Returns true if the given point is inside this BoundingBox.

intersects(BoundingBox other)

Returns true if any corner point in the argument is inside this BoundingBox.

20f11

UML Diagram

The following UML diagram
is a summary of most of the
classes and methods in the
engine package.

You will need to read the
source code documentation
to get a full understanding of
each class and the methods
therein.

Note that any underlined
methods are static and any
methods in italics are
abstract.

Note that this diagram does
not follow the rules of UML
exactly. If you are confused
by the diagram please ask
your lecturer.

engine

engine.input

AN

engine.math

N

Mouse <implements MouseListener,
MouseMotionListener>

Keyboard
<implements java.awt.event.KeyListener>

- leftFunction : Function

- rightFunction : Function

- middleFunction : Function
- lastPos : Vector2D

- keyFunctions : HashMap
<Integer, Function>

+ getlLastPos() : Vector2D

+ isLeftDown() : boolean

+ isRightDown() : boolean

+ isMiddleDown() : boolean

+ setl eftFunction(func: Function) :

+ setKeyFunction(keyCode: int,
func: Function) : Function

+ isPressed(int keyCode: int) : boolean

Function <<abstract>>

- pressed : boolean
- delay : long
- timer : long

Function
+ setRightFunction(func: Function) :
Function
+ setMiddleFunction(func: Function) :
Function
KeyCodeException

<extends RunTimeException>

+ execute() : void
+ update(millisElapsed: long) : void
+ isPressed() : boolean

- keycode : int

+ getKeyCode() : int

Vector2D

BoundingBox

- x : float
-y :float

+ add(other: Vector2D) : Vector2D
+ subtract(other: Vector2D) : Vector2D
+ div(scale: float) : Vector2D
+ scale(scale: float) : Vector2D
+ normalize() : Vector2D
+ length() : double
+ distance(other: Vector2D) . double
+ rotate (origin: Vector2D,
degrees: double) : void
+ equals(other: Object) : boolean
+ clone() : Vector2D

- position : Vector2D
- width : float
- height : float

MathException
<extends RunTimeException>

+ getCenteredInstance(center: Vector2D,
width: float, height: float) : BoundingBox

+ contains(point: Vector2D) : boolean

+ intersects(other: BoundingBox) : boolean

+ getintersectedArea(other: BoundingBox)

: BoundingBox

+checkCollision(other: BoundingBox): Side

+ setPosition(x: float, y: float) : void

+ getPosition() : Vector2D

+ getPositionReference() : Vector2D

+ move(x: float, y: float) : void

+ scale(scale: float) : BoundingBox

+ distance(other: BoundingBox) : double

- badMaths: Object

+ getBadObj() : Object

GameEngine

Game <<abstract>>

engine.graphics

- paintObjects : ArrayList<IPaintable>

- updateObjects: Arraylist<|Updatable>

- collidableObjects : ArrayList<ICollidable>
- paused : boolean

- debug : boolean

- game : Game

+ loadGame(g: Game) : void
+ getGame() : Game
+ add(obj: Object) : void
+ addToBackground(

obj: IPaintable) : void
+ remove(obj: Object) : boolean
+ getGameObjs(): Object
+ getGameObijs(

classPath: String) : Object
+ maximizeWindow(): void
+ getMainWindow(): MainWindow
+ update(millisElapsed: lona) : void
+ repaint(): void
+ quit(): void

+ load() : void

loadKeyFunctions() : void

loadMouseFunctions() : void
loadlmages() : void

getWinWidth() : int
#getWinHeight() : int

engine.interfaces \

ImageLibrary

Debugger

- images : HashMap
<String, Bufferedimage>

+ load(alias: String

imagePath: String) : void
+ get(alias: String) : Bufferedimage

+ drawBounds(g: Graphics,
b: BoundingBox, c: Color) : void

+ drawMovementVector(g: Graphics,
b: BoundingBox, targetLocation:
Vector2D, c: Color) : void

+ drawArrow(g: Graphics, pos: Vector2D,
target: Vector2D, c: Color) : void

<<interface>> IPaintable

+ paint(g : Graphics) : void

<<interface>> IUpdatable

+ update(millisElapsed: long) void

<<interface>> ICollidable

+ getBounds() : BoundingBox
+ collideWith(other: ICollidable) : boolean
+ onCollision(other: ICollidable) : void

MainWindow
<extends javax.swing.JFrame>

GraphicsPanel
<extends javax.swing.JPanel>

- canvas : GraphicsPanel
- fpsDisplay : JLabal

+ getCanvas() : GraphicsPanel
+ getCanvasCenter() : Vector2D
+ showFPS() : void

+ hideFPS() : void

3of11

EcoSim

EcoSim attempts to simulate the relationship between predators and prey in the environment. Each animal will have to
find food to survive. If they survive for long enough they will reproduce to create more animals. Some animals eat
other animals. Some animals eat plants. In this assignment our animals will be wombats and snakes. The shakes will
eat the wombats, the wombats will eat grass. The wombats will breed faster than the snakes but will have to eat more
to stay alive.

You will need to complete the ecosim package and add its game objects to the GameEngine. In this assignment, you
will have to define five classes. You will need to define the Animal, Wombat and Snake classes. You will also need to
define the EcoSim and OutOfBoundsException classes. You have been provided some complete classes to get you
started. These include Main, Entity, GrassTuft, Tile, SandTile and GrassTile.

Provided Classes

The following classes have been provided for you...

ecosim.game.Main

Main is the starting point of the program. It constructs an EcoSim object and adds it to the GameEngine. Execute the
main method in the Main class to start the EcoSim application.

ecosim.world.Tile

Tile contains a BoundingBox and a Bufferedimage. Tile implements IPaintable so it has a paint method which will
paint its image to its bounding box position. Tiles will be created and arranged into a grid. This will act as a
background image and determine the area in which the Wombats and Snakes are allowed to move. Once added to
the GameEngine, using GameEngine.addToBackground(tile), it will automatically be painted to the screen and will
appear behind images added on top of it. It also contains the constants Tile. WIDTH and Tile.HEIGHT which should be
used as the width and height of every Tile.

ecosim.world.GrassTile

GrassTile extends from Tile. GrassTufts are only allowed to be created in the same position as a GrassTile.
GrassTiles should be added to the GameEngine background.

ecosim.world.SandTile

SandTile extends from Tile. A GrassTuft should never be allowed to grow on top of a SandTile. SandTiles should also
be added to the GameEngine background.

ecosim.entity.Entity

Entity is the base class of Animal and GrassTuft. An Entity has a bounding box, a target position, an image and an
alive status. The bounding box determines the Entity's position and size. Entity implements IPaintable and
consequently, has a paint method which will paint the Entity's image to the screen at its position. It implements
IUpdatable so it has an abstract update method, which should be overridden in its derived classes to determine how
the Entity acts and how it moves. In general, the Entity will move towards its target position over time. It has a die
method which, when called, will set alive to false and automatically remove the Entity from the GameEngine. Once
removed from the GameEngine, an Entity will not be updated or painted to the screen.

Any class extending from Entity can be added to the GameEngine using GameEngine.add(entity). This will paint it on
top of objects added to the background.

ecosim.entity.GrassTuft

GrassTuft extends from Entity and, as a result, has an image, bounding box, and alive status. It will be painted to the
screen at its bounding box position. It can die, just like any Entity. It also has an update method, but the update
method is empty. Wombats will find GrassTuft objects, move to their location and eat them. If a GrassTuft is eaten by
a Wombat, the GrassTuft will die and be removed from the GameEngine.

4 of 11

Required Classes
The following classes will need to be written by you...

ecosim.game.EcoSim

EcoSim extends from the abstract class engine.Game. It must implement the abstract methods loadKeyFunctions(),
loadMouseFunctions(), loadlmages(), getWinWidth(), getWinHeight() and update(long millisElapsed). Most of these
methods have been written for you. The class contains a gridWidth, gridHeight, timer and 2 dimensional array of Tiles.
The gridWidth and gridHeight determine the length of the tile array. The timer will be used in the update method.

Complete the EcoSim constructor to save the arguments gridWidth and gridHeight to instance variables. Initialize the
length of the tile array to gridHeight arrays of gridWidth length each. Implement the getWinWidth method to return
gridwidth multiplied by the Tile width. Implement the getWinHeight method to return gridHeight multiplied by the Tile
height.

The EcoSim load method should call super.load(). This will automatically call the loadKeyFunctions(),
loadMouseFunctions() and loadimages() methods. After calling super.load(), you will need to create a two dimensional
array of Tiles and add each to the GameEngine background. You will need a nested for loop to place the tiles at
intervals of Tile. WIDTH along the x coordinate and intervals of Tile.HEIGHT along the y coordinate.

While creating your tiles, generate a random number and use it to ensure that approximately 80% of the Tiles are
GrassTiles and 20% of the Tiles are SandTiles. If it is a GrassTile, generate another random number and use it to
ensure that 50% of the time, you create a GrassTuft object and add it to the GameEngine at the same position as the
GrassTile. Generate another random number and use it to ensure that about 20% of the time, you add a Wombat at
the same position as the Tile and 10% of the time, you add a Snake. There should be about half as many Snakes as
Wombats.

The EcoSim update method should add a GrassTuft object to the GameEngine background every 1000 milliseconds.
Add the millisElapsed argument to the timer instance variable. If the timer is greater than 1000 add a GrassTuft object
in the same position as a random GrassTile that does not already have a GrassTuft in the same position. You can
access the GrassTuft objects from the GameEngine using GameEngine.getGameObjs("ecosim.entity.GrassTuft").
This will return an Object array. You can type cast each item from the array to a GrassTuft and check its position is not
the same as the GrassTile you have selected. If none of the GrassTufts are in its position, create the GrassTuft here.
If a GrassTuft was successfully created, reset the timer back to zero.

ecosim.entity.Animal

Animal is an abstract class that extends from Entity. It has energy, breedTime, maxBreedTime, speed and a timer.
The energy starts at a high number but, if it reaches zero, the Animal will die. The breedTime will start at
maxBreedTime and when it reaches zero, the Animal will breed to create a copy of itself and add it to the
GameEngine. The breedTime will then be reset to maxBreedTime. The speed determines how far the Animal can
move each step. The timer will add up towards 1000. Every time it reaches 1000, it will decrease the energy by 1 and
decrease the breedTime by 1. The timer should then be reset to zero.

You will need to complete the constructor, provide getters and setters and implement the update method. In the
constructor, initialize the instance variables to the given arguments and initialize the timer to zero. Also call the
abstract selectTarget method. Add getters and setters for each of the variables except for the timer. Ensure that the
setters only change the variables if the argument is greater than or equal to zero.

The Animal update method should add the millisElapsed to the timer. If the timer is greater than 1000, the timer
should reset to zero and the energy and the breedTime should decrease by one. If the energy is zero or less, the
animal should call the die() method. Otherwise, if the breedTime is less than or equal to zero, the Animal should call
the breed method and add the result to the GameEngine. If the Animal is still alive, the animal should move towards
its target position.

50f11

The Vector math for moving the Animal is provided below:
Vector2D direction = target.clone () .subtract (this.getPosition());
direction.normalize () .scale(this.speed);

this.getBounds () .move (direction);

These diagrams demonstrate how the above Vector mathematics works:

—
[(512x,0y) |
L (192x, 128y)| I

(0x, 192y).normalize()
= (0x, 1y)

P

(192x, 320y) - (192x, 128y)

=(0x, 192y) I

(192x, 320y)|

Figure 1: Position of Wombat and GrassTuft Figure 2: Use subtract to get position of Figure 3: Use normalize() to scale the Vector
relative to (0, 0). GrassTuft relative to Wombat. to length 1. Use scale() to multiply the length

by speed. Move the Wombat by the result.

ecosim.entity.Wombat

Wombat will extend from Animal and have an instance variable, called targetGrass, containing a GrassTuft target. By
default this GrassTuft should be null. The Wombat constructor will have to send its position and its default image,
energy, breed steps and movement speed to the super constructor. You can set your energy to 10, breedSteps to 18
and speed to 1. The Wombat will need to implement the breed method and selectTarget method. It will also need to
override the update method.

The breed method should return a Wombat at the same position as the calling object. The update method should call
super.update(). Provided the Wombat is not dead, it should then find the distance between its position and its target
vector. If it is less than half the width of a tile, then the Wombat has reached its destination. It should set target to null.
If the Wombat has a target GrassTuft, and it is within a half Tile width of that object, the Wombat should add 10 to its
energy, call the target grass' die method and set its target grass variable to null. It should then call the selectTarget
method.

The selectTarget method will check to see if the Wombat's energy is lower than 10 and if it is, the Wombat should find
the closest GrassTuft object and set a reference to that GrassTuft's position as the Wombat's target. The GrassTuft
should also be saved as the Wombat's targetGrass. If the Wombat does not have a targetGrass and it does not have
a target, you should generate a new target at a random position between 0 and 150 pixels away from the Wombat's
current position. If the new target's x or y coordinate is less than zero or its x coordinate is greater than the Game's
pixel width or its y coordinate is greater than the Game's pixel height, you should throw an OutOfBoundsException. If
an OutOfBoundsException is caught, the target vector should be constrained to between 0 and the Game's width
along the x and between 0 and the Game's height along the y.

ecosim.entity.Snake

Snake will extend from Animal and have an instance variable for moveSpeed, attackSpeed and a targetWombat
containing a reference to a Wombat. The Snake constructor will have to send its position and its default image,
energy, breed steps and movement speed to the super constructor. You can set the energy to 16, breedSteps to 32
and speed to 0.6. Set the attack speed to 1.1 and the move speed to 0.6. You will need to implement the breed
method and selectTarget method and override the update method.

6 of 11

The breed method should return a Snake at the same position as the calling object. The update method should call
super.update(). Provided the Snake is not dead, it should set its speed to its moveSpeed. If its targetWombat is not
null and the targetWombat is alive, if the distance to the Wombat is less than half a Tile width, then the Snake should
gain the energy of the Wombat, the Wombat should die and the targetWombat should be set to null. Otherwise, if the
distance from the Snake to the Wombat is less than 3 Tile widths, set the Snake's speed to its attackSpeed, so it can
chase down the Wombat. It should then call the selectTarget method.

The selectTarget method will check to see if the Snake's energy is lower than 8 and if it is, the Snake should find the
closest Wombat object and set a reference to that Wombat's position as the Snake's target. The Wombat should also
be saved as the Snake's targetWombat. If the Snake does not have a targetWombat and it does not have a target,
you should generate a new target at a random position between 0 and 150 pixels away from the Snake's current
position. If the new target's x or y coordinate is less than zero or its x coordinate is greater than the Game's pixel width
or its y coordinate is greater than the Game's pixel height, you should throw an OutOfBoundsException. If an
OutOfBoundsException is caught, the target vector should be constrained to between 0 and the Game's width along
the x and between 0 and the Game's height along the y.

ecosim.exception.OutOfBoundsException

The OutOfBoundsException class should extend from Exception. It should have a private final instance variable called
badPosition that contains a Vector2D. The class will need a constructor that takes a Vector2D parameter and saves it
in the instance variable. It should also call super with the default error message, "Out of bounds: " + badPosition.
Provide a getter method to return the badPosition.

Source Code Documentation

You will be required to include source code documentation for each of the methods you write. You must place a
comment between /** and */ on the line above each of the methods you write. Describe in detail what the method
does, what parameters are required and what value is returned.

An example of a doc string for the EcoSim getWinWidth method is as follows:

] **
* Return the total screen width of the Game, which should be
* the number of horizontal Tiles multiplied by the tile width.
* gridWidth multiplied by default Tile width.
*/
public int getWinWidth() {
return this.gridWidth * Tile.WIDTH;
}

7of11

UML Diagram

The following UML diagram is a summary of all classes in the ecosim package. Your goal in this assignment is to
implement the UML Diagram in code. The classes marked in blue contain the methods you will neeed to implement.
Note that any underlined methods are static and any methods in italics are abstract.

ecosim.world \

Tile <<abstract>>

+ WIDTH : int
+ HEIGHT : int -

<<interface>>
#image : Bufferedimage <<implements>> engine.interfaces.IPaintable

bounds : BoundingBox
+ paint(g : Graphics) : void

+ getX() : float
+ getY() : float
+ getBounds() : BoundingBox <<interface>>
+ paint(g: Graphics) : void engine.interfaces.lUp

+ update(millisElapsed:
long) void

SandTile GrassTile

ents>>

<<imple

ecosim.entity \

java.langException

Entity <<abstract>>

image : Bufferedimage
bounds : BoundingBox
target : Vector2D

A - alive : boolean = true

+ getX() : float
ecosim.exception \ + getY() : float [—
+ getBounds() : BoundingBox

+ getPosition() : Vector2D
OutOfBoundsException + isAlive() : boolean

+ die() : void

+ paint(g: Graphics) : void

+ update(millisElapsed: long) : void

e e

- badPosition: Vector2D

+ getBadPosition() : Vector2D

l

GrassTuft Animal <<abstract>>

energy : int

breedTime : int

maxBreedTime : int
speed : float

engine.Game

+ getEnergy() : int

+ setEnergy(energy : int) : void

+ getBreedTime() : int

+ setBreedTime(time : int) : void

+ setMaxBreedTime(time : int) : void
+ getMaxBreedTime() : int

+ getSpeed() : float

ecosim.game \ + setSpeed(speed: float) : void
+ breed() : Animal
+ 2 VOl
e selectTarget() : void
- tiles : Tile[][] [
- gridwidth : int
- gridHeight : int i Snake
- timer : int
- targetGrass : GrassTuft - targetWombat : Vector2D
o) - timer : long - actualSpeed : float
+ getGridWidth() : int : - attackSpeed : float
+ getGridHeight() : int - timer : int
+ findGrass() : GrassTuft

+ breed() : Wombat + findWombat() : Wombat
+ breed() : Snake

How ToO START

The following are a few things you can do to test that the GameEngine works:

o Implement any unimplemented methods to remove all the compile errors.

e Inthe EcoSim load method, under super.load() call GameEngine.add(new Wombat(200, 300)). This should put
a Wombat on the screen. Change the numbers to change the Wombat's position.

e If your window is too small, return a number from the EcoSim getWinHeight() and getWinWidth() method.
Maybe return 600 from the getWinWidth() and return 400 from getWinHeight().

e Inthe Wombat update method call this.getBounds().move(1, 0). This should cause the Wombat to move 1
pixel to the right 60 times per second. Try changing the numbers to see what causes it to move in different
directions.

e Press the tilde button (~). This should set the GameEngine debugging state to true. You should be able to see
a BoundingBox drawn around the Wombat. Normally this would show the movement vector as an arrow, but
you will have to follow the specifications above to get that to work. You can also try pressing the space key to
pause the program.

e You may like to open the GameEngine, BoundingBox and Vector2D classes to read their code. You may also
like to read the documentation in the doc folder. This should give you further understanding of how the
GameEngine works.

e Once you are feeling confident return to the EcoSim Required Classes section and follow the instructions to
complete the assignment.

ADDITIONS

The EcoSim and GameEngine are extendable. For full marks you must implement at least one of the following
additions. Please only attempt these once you have completed all other requirements. If you submit an unfinished
addition, please ensure that your code still compiles without errors.

e Another Animal: Implement a predator of Snakes or another predator of GrassTufts. The new Animal must
have a new image.

e Animation: Implement sprite animations. In the assets/images folder, there is a second image for both
Wombat and Snake. Cycle between the first and second image every 500 milliseconds to create a walk cycle.

e Obstacle: Implement a new Tile that Animals cannot stand on or move through. Water or Bush tiles might be
appropriate. These Tiles will need new images.

e Wombat Artificial Intelligence: Wombats should try to move away from any nearby Snakes, unless they are
hungry and the Snake has gotten in the way of their food.

e Collisions: Implement the ICollidable interface for Snakes and Wombats so that Snakes do not pass through
other Snakes and Wombats do not pass through other Wombats.

e Realistic Breeding: Implement the ICollidable interface for Animals so that Animals can only breed when
their breedTimer is less than or equal to zero and they have collided with another object of the same class.

e Sound: Add a sound system and sound files to the EcoSim, so that Snakes and Wombats make sounds
whenever they eat, breed or die.

e Paused Label: Display a label saying PAUSED at the center of the screen whenever the GameEngine is
paused.

e Other: If you would like to make an addition not listed above, please discuss it with your lecturer.

9o0f11

SUBMISSION DETAILS

You are required to submit an electronic copy of your program via Moodle. Make sure your eclipse project is included
in a zip file (WinzZip). The zip file should be called yourId.zip. For example: bonjy1207.zip. Ensure that your

files are named correctly (as per instructions outlined in this document).

All Java files that you submit must include the following comments.

/**

/ File: fileName.java

/ Author: your name

/ Id: your id

/ Version: 1.0 today’s date

/ Description: Assignment 2 - ...

/ This is my own work as defined by the SAIBRT
/ Academic Misconduct policy.

*

/

This is to acknowledge this is your own individual work.

Assignments that do not contain these details may not be marked.

Work that has not been correctly submitted to Moodle will not be marked.

It is expected that students will make copies of all assignments and be able to provide these if required.

EXTENSIONS AND LATE SUBMISSIONS

There will be no extensions/late submissions for this course without one of the following exceptions:

1.

4,

A medical certificate is provided that has the timing and duration of the illness and an opinion on how much
the student’s ability to perform has been compromised by the iliness. Please note if this information is not
provided the medical certificate WILL NOT BE ACCEPTED. Late assessment items will not be accepted
unless a medical certificate is presented to the Course Coordinator. The certificate must be produced as soon
as possible and must cover the dates during which the assessment was to be attempted. In the case where
you have a valid medical certificate, the due date will be extended by the number of days stated on the
certificate up to five working days.

A SAIBT councillor contacts the Course Coordinator on your behalf requesting an extension. Normally you
would use this if you have events outside your control adversely affecting your course work.

Unexpected work commitments. In this case, you will need to attach a letter from your work supervisor with
your application stating the impact on your ability to complete your assessment.

Military obligations with proof.

Applications for extensions must be lodged with the Course Coordinator before the due date of the assignment.

Note:

Equipment failure, loss of data, ‘Heavy work commitments’ or late starting of the course are not sufficient

grounds for an extension.

10 of 11

ACADEMIC MISCONDUCT

Students are reminded that they should be aware of the academic misconduct guidelines available from the SAIBT

website.

Deliberate academic misconduct such as plagiarism is subject to penalties. Information about Academic integrity can
be found in the “Policies and Procedures” section of the SAIBT website.

MARKING CRITERIA

Assessment feedback

Programming Fundamentals (COMP1040)
Assignment 2 — Weighting: 20%

NAME: MAX MARK | MARK | COMMENT
EcoSim: Constructor(3), load(7), update(10) 20
ANIMAL: Constructor(2), update(10), getters and

20
setters(8)
WoMBAT: Constructor(3), update(5), selectTarget(5),
) 20
findGrass(7)
SNAKE: Constructor(3), update(5), selectTarget(5), 20
findWombat(7)
OUTOFBOUNDSEXCEPTION: Constructor(3), getter(2), 10
Exception Handling(5)
STYLE: Doc comments (5) 5
ADDITIONS*: Animation (10), extra animal(10),
obstacle(10), Wombat A.1.(10), collisions(10), 5~20
breeding(10), sound(10), paused label(10), other...
TOTAL 100 MARKS

*Note that the maximum marks without additions is 95%. An addition must be made for full marks. Additions may

recover lost marks up to a maximum of 20.

Possible deductions:

e Programming style: -10 marks for poor or no commenting, poor variable names, poor indentation, use
of break and continue etc.

e Submitted incorrectly: -20 marks if assignment is submitted incorrectly.

11 of 11

